Tytuł pozycji:
Molecular Engineering of Azahomofullerene-based Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells
- Tytuł:
-
Molecular Engineering of Azahomofullerene-based Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells
- Autorzy:
-
Akin, Seckin
Sadegh, Faranak
Nawrocki, Jan
Yadav, Pankaj
Prochowicz, Daniel
Ans, Muhammad
Nikiforow, Kostiantyn
Paczesny, Jan
Bończak, Bartłomiej
Chavan, Rohit D.
Unal, Muhittin
Mahapatra, Apurba
Kruszyńska, Joanna
- Współwytwórcy:
-
Institute of Physical Chemistry, Polish Academy of Sciences
Laboratory of Advanced Materials & Photovoltaics (LAMPs), Necmettin Erbakan University, Konya, Turkey
Department of Solar Energy, School of Technology, Pandit Deendayal Energy University
- Słowa kluczowe:
-
halide perovskite
perovskite solar cells
azahomofullerene
- Data publikacji:
-
2023-09-22
- Wydawca:
-
ACS Publications
- ISBN, ISSN:
-
15205002
- Język:
-
angielski
- Linki:
-
https://depot.ceon.pl/handle/123456789/22943  Link otwiera się w nowym oknie
- Prawa:
-
http://creativecommons.org/licenses/by/4.0/
- Dostawca treści:
-
Repozytorium Centrum Otwartej Nauki
-
Przejdź do źródła  Link otwiera się w nowym oknie
National Science Centre
The rational molecular design of fullerene-based
molecules with exceptional physical and electrical properties is in high demand to ensure efficient charge transport at the perovskite/electron transport layer interface. In this work, novel azahomofullerene
(AHF) is designed, synthesized, and introduced as the
interlayer between the SnO2/perovskite interface in planar n−i−p
heterojunction perovskite solar cells (PSCs). The AHF molecule (denoted as AHF-4) is proven to enhance charge transfer capability compared to the commonly used fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) due to its superior coordination interaction and electronic coupling with the SnO2 surface. In addition, the AHF-4 interlayer concurrently improves the quality of the perovskite film and reduces charge recombination
in PSCs. The resultant AHF-4-based device exhibits a maximum efficiency of 21.43% with lower hysteresis compared to the PCBM device (18.56%). Benefiting from the enhanced stability of the AHF-4 film toward light soaking and elevated temperature, the AHF-4-based devices show improved stability under continuous 1 sun illumination at the maximum power point and 45 °C. Our work opens a new direction to the design of AHF derivatives with favorable physical and electrical properties as an interlayer material to improve both the performance and stability of PSCs.