Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Smart wireless sensor network and configuration of algorithms for condition monitoring applications

Tytuł:
Smart wireless sensor network and configuration of algorithms for condition monitoring applications
Autorzy:
Uhlmann, E.
Laghmouchi, A.
Geisert, C.
Hohwieler, E.
Tematy:
condition monitoring
data analysis
sensor network
algorithm
MEMS sensor
cloud
Data publikacji:
2017
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Źródło:
Journal of Machine Engineering; 2017, 17, 2; 45-55
1895-7595
2391-8071
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Due to high demand on availability of production systems, condition monitoring is increasingly important. In recent years, the technical development have improved for realization of condition monitoring applications as a result of technological progress in fields such as sensor technology, computer performance and communication technology. Especially, the approaches of Industrie 4.0 and the use of the Internet of Things (IoT) technologies offer high potential to implement condition monitoring solutions. The connection of several sensor data of components to the cloud allows the identification of anomalies or defect pattern, this information can be used for predictive maintenance and new data-driven business models in production industry. This paper illustrates a concept of a smart wireless sensor network for condition monitoring application based on simple electronic components such as the single-board computer Raspberry Pi 2 modules and MEMS (Micro-Electro-Mechanical Systems) vibration sensors and communication standards MQTT (Message Queue Telemetry Transport). The communication architecture used for decentralized data analysis using machine learning algorithms and connection to the cloud is explained. Furthermore, a procedure for rapid configuration of condition monitoring algorithms to classify the current condition of the component is demonstrated.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies