Tytuł pozycji:
Production Optimization by Cognitive Technologies
Today, value chains are considered fractionally and on the basis of simplified model assumptions. Interactions between processes, materials, means of production and individuals acting in this environment as well as the effect of changes on the product usually are not known exhaustively. In order to take corrective actions towards these deficits, self-optimizing production system technologies can be used. They provide systems that emulate the "human" ability of reaching a decision with technical architectures. The goal of these approaches is to steadily analyze and evaluate the actual status in technological as well as in organisational areas and conduct a system adaptation to alternating objectives. Central questioning in this field of research is how to survey production data in order to detect correlations of production parameters and their influence on product parameters, how to derive decisions from this knowledge and how to learn from the consequences. Application technologies capable of taking on these tasks of self-optimization to emulate intelligent behaviour are analysed. The aim is to identify the competencies of these technologies, in order to build a cognitive system architecture based on applications especially suited for each task that has to be fulfilled to emulate cognitive human decision making processes.