Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Optimized image feature selection using pairwise classifiers

Tytuł:
Optimized image feature selection using pairwise classifiers
Autorzy:
Bazarganigilani, M.
Tematy:
content based image retrieval systems
content-based image retrieval (CBIR)
higher feature
classifier
Data publikacji:
2011
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2011, 1, 2; 147-153
2083-2567
2449-6499
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this paper, we introduce an optimized method to improve the accuracy of content based image retrieval systems (CBIR). CBIR systems classify the images according to low and higher features.In our research, we improve both feature selection and classifier partition of a CBIR system. Results show great performance of our proposed algorithm.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies