Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

On Testing Linearity of Trend Function

Tytuł:
On Testing Linearity of Trend Function
O testowaniu hipotezy o liniowości trendu
Autorzy:
Kończak, Grzegorz
Wywiał, Janusz
Tematy:
kernel estimator
trend
testing
approximation of distribution function
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 225
0208-6018
2353-7663
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Testing the goodness of fit between a hypothetical trend function and its non-parametric variant will be considered. This problem was analysed e.g. by Domanski (1979, 1990), Wywiał (1990, 1995). Our result can be treated as a modification of the test proposed by Azzalini and Bowman (1993). The hypothetical trend function will be denoted by f(t, θ). It is estimated by an unbiased method. A trend function can be estimated by means of an non-parametric method. Azzalini and Bowman suggested testing the hypothesis on the linearity of the trend on the basis of the ratio of two residual variances. One of them is the residual variance of the trend estimated by means of the least square method and the other one by means of a non-parametric method. The well known Pearson curves are used for an approximation of the distribution function of the ratio. We use a different method in order to approximate the distribution of the test statistic. The table with quantiles of the test statistic are evaluated.

W artykule rozważano pewną modyfikację testu dla hipotezy głoszącej, że trend szeregu czasowego ma postać liniową, który zaproponowali Azzalini i Bowman (1903). Statystyka testowa jest ilorazem wariancji resztowej estymatora wartości funkcji liniowej trendu uzyskanej metodą najmniejszych kwadratów i pewnej formy kwadratowej reszt oceny trendu otrzymanego metodą estymacji jądrowej. Wysokie wartości tego ilorazu świadczą przeciwko hipotezie o liniowości funkcji trendu. Ze względu na złożoną postać proponowanej statystyki Azzalini i Bowman wykorzystali do aproksymacji jej rozkładu prawdopodobieństwa tzw. krzywe Pearsona W niniejszym artykule stosuje się do przybliżenia rozkładu sprawdzianu testu inną metodę wykorzystującą technikę całkowania numerycznego. Przy założeniu liniowej postaci funkcji trendu pozwoliło to wyznaczyć numerycznie kwantyle rzędu 0,9, 0,95 i 0,99 rozważanej statystyki testowej. Przedstawione wartości kwantyli mogą stanowić podstawę do podjęcia decyzji o ewentualnym odrzuceniu hipotezy o postaci trendu liniowego.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies