Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Bayesian combined forecasts and Monte Carlo simulations to improve inflation rate predictions in Romania

Tytuł:
Bayesian combined forecasts and Monte Carlo simulations to improve inflation rate predictions in Romania
Autorzy:
Simionescu, Mihaela
Tematy:
forecasts accuracy
Bayesian forecasts combination
shrinkage parameter
econometric model
Data publikacji:
2020
Wydawca:
Uniwersytet Ekonomiczny w Poznaniu
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Źródło:
Research Papers in Economics and Finance; 2020, 4, 1; 7-20
2543-6430
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this paper we applied the regression approach and Bayesian inference to obtain more accurate forecasts of the inflation rate in the case of the Romanian economy. The necessity of using the most accurate forecasts for the inflation rate is required by the realisation of economic criteria for the accession to the eurozone and by the inflation targeting strategy of the National Bank of Romania. Considering the assumption that simple econometric models provide better forecasts than complex models, in this paper we combined various forecasts from individual models using as prior information the expectations of experts. The empirical findings for Romanian inflation rate forecasts over the horizon of 2016-2018 indicated that a fixed effects model performed better than other simple models (autoregressive moving average model, dynamic model, simple and multiple linear model, VAR, Bayesian VAR, simultaneous equations model). The Bayesian combined forecasts that used experts’ predictions as priors, with a shrinkage parameter tending to infinity, improved the accuracy of all predictions using individual models, outperforming also naïve forecasts and zero and equal weights forecasts. However, predictions based on Monte Carlo simulation outperformed all the scenarios in terms of the mean error and mean absolute error.  

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies