Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Does Science Progress Towards Ever Higher Solvability Through Feedbacks Between Insights and Routines?

Tytuł:
Does Science Progress Towards Ever Higher Solvability Through Feedbacks Between Insights and Routines?
Autorzy:
Marciszewski, Witold
Tematy:
Algorithm
arithmetic
axiom
axiomatic formalized theory
concept
decidability
feedback
insight (intuition)
mathematics
mechanism
mentalism
oracle
problem
problem-solving
progress
routine procedure
science
solvability
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Semiotyczne
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Źródło:
Studia Semiotyczne; 2018, 32, 2; 153-185
0137-6608
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The affirmative answer to the title question is justified in two ways: logical and empirical. (1) The logical justification is due to Gödel’s discovery (1931) that in any axiomatic formalized theory, having at least the expressive power of PA (Peano Arithmetic), at any stage of development there must appear unsolvable problems. However, some of them become solvable in a further development of the theory in question, owing to subsequent investigations. These lead to new concepts, expressed with additional axioms or rules. Owing to the so-amplified axiomatic basis, new routine procedures like algorithms, can be reached. Those, in turn, help to gain new insights which lead to still more powerful axioms, and consequently again to ampler algorithmic resources. Thus scientific progress proceeds to an ever higher scope of solvability. (2) The existence of such feedback cycles – in a formal way rendered with Turing’s systems of logic based on ordinal (1939) – gets empirically supported by the history of mathematics and other exact sciences. An instructive instance of such a process is found in the history of the number zero. Without that insight due to some ancient Hindu mathematicians there could not arise such an axiomatic theory as PA. It defines the algorithms of arithmetical operations, which in turn help intuitions; those, in turn, give rise to algorithmic routines, not available in any of the previous phases of the process in question. While the logical substantiation of the point of this essay is a well-established result of logico-semantic inquiries, its empirical claim, based on historical evidences, remains open for discussion. Hence the author’s intention to address philosophers and historians of science, and to encourage their critical responses.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies