Tytuł pozycji:
Modelowanie cenowe złoża węgla brunatnego Gubin jako wstęp do właściwej gospodarki surowcowej
W pracy przedstawiono podejście do złoża kopaliny jako dobra ekonomicznego umożliwiającego pozyskanie pieniądza w czasie, w procesie jego eksploatacji. Zaproponowano model cenowy złoża do wstępnej jego analizy pod kątem opłacalności eksploatacji, okonturowania zasobów przemysłowych, wyboru miejsca udostępnienia oraz sterowania wydobyciem w funkcji ceny kopaliny. Wykorzystany do modelowania parametr cenowy jest wypadkową parametrów jakościowych i strukturalnych złoża, które mają wpływ na cenę kopaliny. Wzór na parametr cenowy dla modelowania złoża węgla brunatnego opracowano na podstawie zmodyfikowanej formuły cenowej wykorzystywanej do rozliczeń. W pracy przedstawiono 3 warianty parametru cenowego: Cj oparty na parametrach jakościowych, tj. wartość opałową Q, popielność A oraz zawartość siarki S. Do obliczania drugiego parametru Cm oprócz parametrów jakościowych włączono również miąższość pokładu węgla M. Parametry Cj i Cm mają charakter względny i odnoszą się do kopaliny w punkcie złoża. Trzeci parametr cenowy CR, uwzględnia powierzchnię jednostkową i gęstość węgla i przedstawia realną cenę kopaliny w złożu wyrażoną w złotych. Metodę modelowania cenowego zaprezentowano na przykładzie złoża węgla brunatnego Gubin. Analizowane złoże zajmuje czołowe miejsce w wielu rankingach pod kątem przydatności do zagospodarowania górniczego. Złoże zostało uwzględnione w Polityce energetycznej Polski do 2030 roku. Analizie poddano pokład II tego złoża. Przedstawiono w niej charakterystykę statystyczną parametrów Q, A, S, M oraz charakter ich zmienności w złożu. Do analizy zmienności przestrzennej parametrów wykorzystano metody geostatystyczne. Obliczone zostały wariogramy empiryczne każdego z parametrów, do których dopasowano właściwe modele. Zaprezentowano metodę wykonywania modeli cenowych. Bazując na obserwacjach z 625 otworów wiertniczych obliczono wartości parametrów Cj i Cmw punktach złoża. Na ich podstawie wykonano wariogramy i dopasowano modele. Na podstawie modeli wariogramów metodą krigingu punktowego wykonano modele cenowe parametrów Cj i Cm. Do modeli cenowych zostały wykonane mapy wiarygodności modeli oparte na odchyleniu standardowym krigingu. Zaproponowano sposób interpretacji modeli cenowych i map wiarygodności.
An approach to the mineral deposit as to resources of money, which can be extracted in the mining process, has been presented in the paper. The proposed price model of a deposit can be useful for the initial analysis of the deposit in terms of mining profitability, estimation of reserves, localization of an opening cut and steering of mineral extraction as a function of the commodity price. The price parameter used for deposit modelling is calculated based on quality and structural parameters of the deposit, which affect the price of extracted commodity. The formula used to calculate the price parameter for modeling of lignite deposit has been elaborated based on a formula used for transaction between mine and power plant. In the paper, three types of price parameters are presented: Cj, Cm and CR. The Cj parameter is calculated from quality parameters: caloric value Q, ash content A and sulfur content S. The Cm parameter includes the same quality parameters as Cj and additionally the thickness of lignite bed (M). Parameters Cj and Cm are relative parameters and relate to point of deposit. The third price parameter CR includes additionally the area units and the density of lignite and presents real price of lignite in the bed expressed in zł. Price modelling method has been presented on the case study of lignite deposit Gubin. The analyzed deposit is highly ranked as very suitable for future extraction and has been included in the Polish Energy Policy until 2030. In the paper only the second bed of the deposit was analyzed. The deposit was described. Statistical characteristics of parameters Q, A, S and M and their variability within the deposit have been presented. Geostatistical tools were used for the analysis of spatial variability. Variograms for each considered parameter were calculated and presented. The values of parameters Cj and Cm were calculated using the data from 625 boreholes. Using these values, variograms were calculated and the appropriate models were developed. On the basis of the variogram models, the models of deposit were calculated using the kriging method (ordinary, point kriging). For each model, a kriging standard deviation map was also made. The method for interpretation of models and kriging standard deviation map was also presented.