Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Detekcja znaków drogowych i kolejowych na zdjęciach i w chmurze punktów – przegląd istniejących algorytmów

Tytuł:
Detekcja znaków drogowych i kolejowych na zdjęciach i w chmurze punktów – przegląd istniejących algorytmów
Traffic and Railroad Signs Detection in Images and in Point Cloud – Overview of Existing Algorithms
Autorzy:
Moskal, A.
Pastucha, E.
Tematy:
znaki drogowe
znaki kolejowe
rozpoznawanie wzorca
detekcja znaków
klasyfikacja znaków
traffic signs
railroad signs
template recognition
sign detection
sign classification
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Informacji Przestrzennej
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Źródło:
Roczniki Geomatyki; 2013, 11, 2(59); 69-78
1731-5522
2449-8963
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Badania i analizy możliwości automatycznego wykrywania znaków rozwijają się równolegle w wielu ośrodkach naukowych na świecie. Motywacje do prac zawierają się w większości w dwóch kategoriach: inwentaryzacja infrastruktury drogowej lub kolejowej oraz tworzenie systemów dla automatycznego wspomagania kierowcy. W zależności od wybranego kierunku, wykorzystywane są różnorakie dane pochodzące z różnych sensorów. Nowotworzone systemy wspomagania kierowcy wymagają sensorów o niewielkich gabarytach, dostarczających dane o małym rozmiarze, podczas gdy technologie tworzone na potrzeby inwentaryzacji znaków mogą korzystać z rozbudowanych systemów pomiarowych, integrujących różnorakie sensory pozyskujące bardzo dokładne, wysokorozdzielcze dane. Czas przetwarzania takich danych również zależy od potrzeb. Wykrycie i sklasyfikowanie znaku w systemach automatycznego wspomagania kierowcy musi być bardzo szybkie. Takich limitów nie trzeba stawiać przed systemami dla celów inwentaryzacji. Pozycjonowanie wykrywanych obiektów ma znaczenie jedynie w systemach inwentaryzujących, jednak nie jest wykluczone w pozostałych. Koncepcje algorytmów różnią się między ośrodkami badawczymi i wykorzystują wiele różnych nurtów w informatyce i matematyce. W artykule przedstawiono przegląd najważniejszych algorytmów z ostatnich piętnastu lat. Krótko opisano etapy pozyskania danych i systemy do tego wykorzystane. Następnie szeroko przedstawiono problem przygotowania danych, koncepcje wstępnego wykrycia znaków i ostatecznych klasyfikacji.

During the last fifteen years, automatic sign recognition in different type of data has become the subject of many studies. Reasons for these works fall into one of two categories: inventory purposes or drivers assistance systems. Depending on the purpose of the systems, various types of sensors, acquiring different type of data, are implemented. Due to their application, drivers assistance systems need small sensors, bringing limited amount of data, while systems for inventory purposes can use complex measuring systems, integrating different types of sensors and providing high accuracy and large volume data. The time is also at issue. Detection and classification of a sign in driver assistance systems has to be done in real time, while processing of data for inventory purposes can be done off–line. Also global positioning of identified signs is significant only in the latter systems. Structures of proposed algorithms vary and use many different concepts, both from math and information processing. In this paper, basic concepts of most important algorithms from the last fifteen years are presented. Data acquisition process and measuring systems are described shortly. Then, data pre-processing, concepts of detection and, finally, concepts of classification are broadly covered.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies