Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Parallel fuzzy clustering for linguistic summaries

Tytuł:
Parallel fuzzy clustering for linguistic summaries
Podsumowania lingwistyczne z równoległym grupowaniem rozmytym
Autorzy:
Smolińska, M. K.
Sosnowski, Z. A.
Tematy:
podsumowania lingwistyczne
grupowanie rozmyte
programowanie równoległe
linguistic summary
fuzzy clustering
parallel computing
Data publikacji:
2009
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Źródło:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka; 2009, 4; 139-150
1644-0331
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Z podsumowaniem lingwistycznym, jak i z predykatem rozmytym związana jest wartość prawdy. Możemy więc podsumowań lingwistycznych używać jako predykatów rozmytych. Podsumowanie postaci większość obiektów w populacji P jest podobna do obiektu oi wykorzystać możemy do znajdowania typowych wartości w populacji P, które to wykorzystuje rozmyty algorytm grupujący. Wadą tego algorytmu jest jego duża złożoność obliczeniowa. W celu przetwarzania dużej liczby danych zaimplementowaliśmy ten algorytm równolegle, korzystając ze standardu MPI do komunikacji między procesami działającymi na różnych procesorach. W tej pracy przedstawiamy algorytm równoległy i wyniki eksperymentów.

The linguistic summaries have the associated truth value so they can be used as predicates. We use summaries of the form ”most objects in population P are similar to oi” to find typical values in population P. Then typical values are used in fuzzy clustering algorithm. Disadvantage of this algorithm is its complexity. For the purpose of processing the huge number of data, we decided to use parallel computing mechanism to implement this algorithm, and run it on the cluster machine. We use MPI (Message Passing Interface) to communicate between processes, which work on different processors. This paper presents this parallel algorithm and some results of experiments.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies