Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Multi-label classification using error correcting output codes

Tytuł:
Multi-label classification using error correcting output codes
Autorzy:
Kajdanowicz, T.
Kazienko, P.
Tematy:
maszyna ucząca się
uczenie nadzorowane
metoda agregacji
struktura ramowa
machine learning
supervised learning
multilabel classification
error correcting output codes
ECOC
ensemble methods
binary relevance
framework
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 4; 829-840
1641-876X
2083-8492
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
A framework for multi-label classification extended by Error Correcting Output Codes (ECOCs) is introduced and empirically examined in the article. The solution assumes the base multi-label classifiers to be a noisy channel and applies ECOCs in order to recover the classification errors made by individual classifiers. The framework was examined through exhaustive studies over combinations of three distinct classification algorithms and four ECOC methods employed in the multi-label classification problem. The experimental results revealed that (i) the Bode-Chaudhuri-Hocquenghem (BCH) code matched with any multi-label classifier results in better classification quality; (ii) the accuracy of the binary relevance classification method strongly depends on the coding scheme; (iii) the label power-set and the RAkEL classifier consume the same time for computation irrespective of the coding utilized; (iv) in general, they are not suitable for ECOCs because they are not capable to benefit from ECOC correcting abilities; (v) the all-pairs code combined with binary relevance is not suitable for datasets with larger label sets.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies