Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The performance profile: A multi-criteria performance evaluation method for test-based problems

Tytuł:
The performance profile: A multi-criteria performance evaluation method for test-based problems
Autorzy:
Jaśkowski, W.
Liskowski, P.
Szubert, M.
Krawiec, K.
Tematy:
coevolutionary algorithms
evolution strategies
Othello
Reversi
games
multiobjective analysis
algorytm koewolucyjny
strategie ewolucyjne
gra Othello
analiza wielokryterialna
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Źródło:
International Journal of Applied Mathematics and Computer Science; 2016, 26, 1; 215-229
1641-876X
2083-8492
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In test-based problems, solutions produced by search algorithms are typically assessed using average outcomes of interactions with multiple tests. This aggregation leads to information loss, which can render different solutions apparently indifferent and hinder comparison of search algorithms. In this paper we introduce the performance profile, a generic, domain-independent, multi-criteria performance evaluation method that mitigates this problem by characterizing the performance of a solution by a vector of outcomes of interactions with tests of various difficulty. To demonstrate the usefulness of this gauge, we employ it to analyze the behavior of Othello and Iterated Prisoner’s Dilemma players produced by five (co)evolutionary algorithms as well as players known from previous publications. Performance profiles reveal interesting differences between the players, which escape the attention of the scalar performance measure of the expected utility. In particular, they allow us to observe that evolution with random sampling produces players coping well against the mediocre opponents, while the coevolutionary and temporal difference learning strategies play better against the high-grade opponents. We postulate that performance profiles improve our understanding of characteristics of search algorithms applied to arbitrary test-based problems, and can prospectively help design better methods for interactive domains.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies