Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Can interestingness measures be usefully visualized?

Tytuł:
Can interestingness measures be usefully visualized?
Autorzy:
Susmaga, R.
Szczęch, I.
Tematy:
visualization
interestingness measures
confirmation measures
barycentric coordinates
wizualizacja
właściwości pomiarów
współrzędne barycentryczne
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 2; 323-336
1641-876X
2083-8492
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The paper presents visualization techniques for interestingness measures. The process of measure visualization provides useful insights into different domain areas of the visualized measures and thus effectively assists their comprehension and selection for different knowledge discovery tasks. Assuming a common domain form of the visualized measures, a set of contingency tables, which consists of all possible tables having the same total number of observations, is constructed. These originally four-dimensional data may be effectively represented in three dimensions using a tetrahedron-based barycentric coordinate system. At the same time, an additional, scalar function of the data (referred to as the operational function, e.g., any interestingness measure) may be rendered using colour. Throughout the paper a particular group of interestingness measures, known as confirmation measures, is used to demonstrate the capabilities of the visualization techniques. They cover a wide spectrum of possibilities, ranging from the determination of specific values (extremes, zeros, etc.) of a single measure, to the localization of pre-defined regions of interest, e.g., such domain areas for which two or more measures do not differ at all or differ the most.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies