Tytuł pozycji:
On the Independence Number of Traceable 2-Connected Claw-Free Graphs
A well-known theorem by Chvátal-Erdőos [A note on Hamilton circuits, Discrete Math. 2 (1972) 111–135] states that if the independence number of a graph G is at most its connectivity plus one, then G is traceable. In this article, we show that every 2-connected claw-free graph with independence number α(G) ≤ 6 is traceable or belongs to two exceptional families of well-defined graphs. As a corollary, we also show that every 2-connected claw-free graph with independence number α(G) ≤ 5 is traceable.