Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Evolutionary multi-agent systems in non-stationary environments

Tytuł:
Evolutionary multi-agent systems in non-stationary environments
Autorzy:
Kisiel-Dorohinicki, M.
Tematy:
multi-agent systems
evolutionary computation
dynamic optimization
non-stationary environment
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 3.0 PL
Źródło:
Computer Science; 2013, 14 (4); 563-575
1508-2806
2300-7036
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this article, the performance of an evolutionary multi-agent system in dynamic optimization is evaluated in comparison to classical evolutionary algorithms. The starting point is a general introduction describing the background, structure and behavior of EMAS against classical evolutionary techniques. Then, the properties of energy-based selection are investigated to show how they may influence the diversity of the population in EMAS. The considerations are illustrated by experimental results based on the dynamic version of the well-known, high-dimensional Rastrigin function benchmark.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies