Tytuł pozycji:
Modelowanie konserwacji zapobiegawczej w oparciu o pojęcie czasu zwłoki w kontekście studium przypadku
Wykorzystując pojęcie czasu zwłoki oraz modele stowarzyszone, w artykule przedstawiono badania modelowe optymalizacji przerwy konserwacyjnej w zakładzie produkcyjnym w oparciu o studium przypadku. Aby ustalić związek pomiędzy przerwą konserwacyjną a oczekiwanym czasem przestoju na jednostkę czasu, potrzebne są dane dotyczące zarówno czasów uszkodzeń jak i liczby usterek wykrytych i usuniętych w okresach konserwacji zapobiegawczej. Niestety, w badanym przez nas przypadku jedynymi dostępnymi danymi były czasy uszkodzeń. Aby obejść ten problem, wykorzystaliśmy szacunkową średnią liczbę usterek wykrytych w okresie konserwacji zapobiegawczej przez obsługę techniczną zakładu. W oparciu o wspomniane dwa typy danych, ustaliliśmy, w pierwszej kolejności, funkcję wiarygodności dla obserwowanych czasów do uszkodzenia. Następnie, w celu określenia niewiadomych parametrów modelu, funkcję tę połączyliśmy z funkcją najmniejszych kwadratów dla różnicy pomiędzy liczbą wykrytych usterek oszacowaną przez pracownika obsługi technicznej a odpowiadającą jej oczekiwaną wartością wyprowadzoną z modelu. Wiarygodność powyższej metody oceny parametrów sprawdzono za pomocą symulacji. Znając wartości parametrów modelu, zaproponowano model konserwacji zapobiegawczej pozwalający na optymalizację oczekiwanego czasu przestoju na jednostkę czasu w odniesieniu do przerwy konserwacyjnej. Proces modelowania przedstawiono za pomocą studium przypadku.
Using the delay time concept and associated models, this paper presents a modelling study of optimising the preventive maintenance (PM) interval of a production plant within the context of a case study. To establish the relationship between the PM interval and expected downtime per unit time, we need the data of both failure times and the number of defects identified and removed at PM epochs. However, the available data to us was only the recorded times of failures. To overcome this problem, we obtained an estimated mean number of the defects identified at the PM epoch by the plant maintenance technicians. Based on these two types of data, we first establish a likelihood function of the observed times to failure and then a squared function of the difference between the number of defect identification estimated by the technician and the corresponding expected value from the model is mixed with the likelihood function to estimate the unknown model parameters. We test by simulation to show the validity of the above parameter estimation method. Once the parameters of the model are known, a PM model is proposed to optimize the expected downtime per unit time with respect to the PM interval. The modeling process is demonstrated by the case study presented.