Tytuł pozycji:
The basis property of eigenfunctions in the problem of a nonhomogeneous damped string
The equation which describes the small vibrations of a nonhomogeneous damped string can be rewritten as an abstract Cauchy problem for the densely defined closed operator iA. We prove that the set of root vectors of the operator A forms a basis of subspaces in a certain Hilbert space H. Furthermore, we give the rate of convergence for the decomposition with respect to this basis. In the second main result we show that with additional assumptions the set of root vectors of the operator A is a Riesz basis for H.