Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Navigation of humanoids by a hybridized regression-adaptive particle swarm optimization approach

Tytuł:
Navigation of humanoids by a hybridized regression-adaptive particle swarm optimization approach
Autorzy:
Kumar, P. B.
Sahu, C.
Parhi, D. R.
Tematy:
navigation
humanoid NAO
RA
APSO
Petri-Net
V-REP
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Źródło:
Archives of Control Sciences; 2018, 28, 3; 349--378
1230-2384
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In the era of humanoid robotics, navigation and path planning of humanoids in complex environments have always remained as one of the most promising area of research. In this paper, a novel hybridized navigational controller is proposed using the logic of both classical technique and computational intelligence for path planning of humanoids. The proposed navigational controller is a hybridization of regression analysis with adaptive particle swarm optimization. The inputs given to the regression controller are in the forms of obstacle distances, and the output of the regression controller is interim turning angle. The output interim turning angle is again fed to the adaptive particle swarm optimization controller along with other inputs. The output of the adaptive particle swarm optimization controller termed as final turning angle acts as the directing factor for smooth navigation of humanoids in a complex environment. The proposed navigational controller is tested for single as well as multiple humanoids in both simulation and experimental environments. The results obtained from both the environments are compared against each other, and a good agreement between them is observed. Finally, the proposed hybridization technique is also tested against other existing navigational approaches for validation of better efficiency.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies