Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A Monte Carlo-Based Method for Assessing the Measurement Uncertainty in the Training and Use of Artificial Neural Networks

Tytuł:
A Monte Carlo-Based Method for Assessing the Measurement Uncertainty in the Training and Use of Artificial Neural Networks
Autorzy:
Coral, R.
Flesch, C. A.
Penz, C. A.
Roisenberg, M.
Pacheco, A. L. S.
Tematy:
artificial neural networks
measurement system
measurement uncertainty
Monte Carlo method
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Źródło:
Metrology and Measurement Systems; 2016, 23, 2; 281-294
0860-8229
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
When an artificial neural network is used to determine the value of a physical quantity its result is usually presented without an uncertainty. This is due to the difficulty in determining the uncertainties related to the neural model. However, the result of a measurement can be considered valid only with its respective measurement uncertainty. Therefore, this article proposes a method of obtaining reliable results by measuring systems that use artificial neural networks. For this, it considers the Monte Carlo Method (MCM) for propagation of uncertainty distributions during the training and use of the artificial neural networks.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies