Tytuł pozycji:
A System for Filling Store Displays: Pitting a Single Model against a Set of Demand Forecasting Models
The aim of the paper was to develop the concept of retail display space allocation as a system and to assess the quality of very slow-moving products demand forecasting models (that have not yet been used by retail companies in Poland) as its key subsystem. Forecasts were made using the example of a clothing company. The quality of these models was assessed using the Weighted Mean Absolute Percentage Error. The first step was to build the individual models. Later, the authors built separate models for brick-and-mortar and online stores as well as brands, creating a set of six models. The findings show that the classification approach for very slow movers provides as precise results as the regression approach. No single model or set of models (built with a particular machine learning method) could be identified that made the best demand forecasts for brick-and-mortar stores, as statistical tests generally did not confirm the significance of the differences between the median forecasts.
Celem artykułu jest opracowanie koncepcji zapełnienia ekspozycji sklepowych jako sys- temu oraz ocena jakości modeli prognozowania popytu (które w Polsce nie są jeszcze wykorzystywane przez sieci handlowe) bardzo wolno rotujących produktów jako jego kluczowego podsystemu. Jakość modeli oceniono za pomocą miary Weighted Mean Absolute Percentage Error na różnych poziomach szczegółowości: dla całej sieci sprzedaży i określonego miesiąca oraz na „na przecięciu” sklepu, produk- tu i rozmiaru produktu. Najpierw zbudowano pojedyncze modele, następnie zaś odrębne modele dla sklepów stacjonarnych i internetowych, jak również marek, tworząc zespół sześciu modeli. Poprawę dopasowania modeli osiągnięto tylko dla sklepów internetowych. Wyniki pracy wskazują, że podejście klasyfikacyjne dla bardzo wolno rotujących produktów charakteryzują równie precyzyjne wyniki pro- gnoz jak podejście regresyjne. Nie można wskazać jednego modelu lub zespołu modeli (zbudowanego określoną metodą uczenia maszynowego), który wykonał najlepsze prognozy popytu dla sklepów sta- cjonarnych, gdyż istotności różnic median prognoz na ogół nie potwierdzono testami statystycznymi.