Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A BIM technology-based underwater structure damage identification and management method

Tytuł:
A BIM technology-based underwater structure damage identification and management method
Autorzy:
Li, Xiaofei
Su, Rongrong
Cheng, Peng
Sun, Heming
Meng, Qinghang
Song, Taiyi
Wei, Mengpu
Zhang, Chen
Tematy:
building information modeling
underwater structural disease
damage identification
deep learning
modelowanie informacji o budynku
identyfikacja uszkodzeń
uczenie głębokie
uszkodzenie podwodnej konstrukcji
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 2; art. no. e144602
0239-7528
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
With the continuous development of bridge technology, the condition assessment of large bridges has gradually attracted attention. Structural Health Monitoring (SHM) technology provides valuable information about a structure's existing health, keeping it safe and uninterrupted use under various operating conditions by mitigating risks and hazards on time. At the same time, the problem of bridge underwater structure disease is becoming more obvious, affecting the safe operation of the bridge structure. It is necessary to test the bridge’s underwater structure. This paper develops a bridge underwater structure health monitoring system by combining building information modeling (BIM) and an underwater structure damage algorithm. This paper is verified by multiple image recognition networks, and compared with the advantages of different networks, the YOLOV4 network is used as the main body to improve, and a lightweight convolutional neural network (Lite-yolov4) is built. At the same time, the accuracy of disease identification and the performance of each network are tested in various experimental environments, and the reliability of the underwater structure detection link is verified.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies