Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Detecting anomalies in advertising web traffic with the use of the variational autoencoder

Tytuł:
Detecting anomalies in advertising web traffic with the use of the variational autoencoder
Autorzy:
Gabryel, Marcin
Lada, Dawid
Filutowicz, Zbigniew
Patora-Wysocka, Zofia
Kisiel-Dorohinicki, Marek
Chen, Guang Yi
Tematy:
anomaly detection
web traffic
ad fraud
variational autoencoder
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 3.0 PL
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 4; 255--266
2083-2567
2449-6499
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This paper presents a neural network model for identifying non-human traffic to a website, which is significantly different from visits made by regular users. Such visits are undesirable from the point of view of the website owner as they are not human activity, and therefore do not bring any value, and, what is more, most often involve costs incurred in connection with the handling of advertising. They are made most often by dishonest publishers using special software (bots) to generate profits. Bots are also used in scraping, which is automatic scanning and downloading of website content, which actually is not in the interest of website authors. The model proposed in this work is learnt by data extracted directly from the web browser during website visits. This data is acquired by using a specially prepared JavaScript that monitors the behavior of the user or bot. The appearance of a bot on a website generates parameter values that are significantly different from those collected during typical visits made by human website users. It is not possible to learn more about the software controlling the bots and to know all the data generated by them. Therefore, this paper proposes a variational autoencoder (VAE) neural network model with modifications to detect the occurrence of abnormal parameter values that deviate from data obtained from human users’ Internet traffic. The algorithm works on the basis of a popular autoencoder method for detecting anomalies, however, a number of original improvements have been implemented. In the study we used authentic data extracted from several large online stores.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies