W artykule przedstawiono możliwości wykorzystania sztucznych sieci neuronowych (SSN) do predykcji parametrycznej w profilach otworów wiertniczych, której zastosowanie uzupełniło zestaw informacji we wszystkich otworach wiertniczych zlokalizowanych w obrębie analizowanego obszaru. Zaprezentowana w artykule metodologia może być użyta w przypadku braku możliwości specjalistycznej interpretacji krzywych geofizyki wiertniczej, uzupełniającej brakujące dane. Zestaw wykorzystanych w pracy danych obejmował rozwiązania w profilach 10 otworów wiertniczych, z których cztery otwory charakteryzowały się pełnym zestawem danych analizowanych w ramach niniejszego artykułu, obejmujących prędkość fali podłużnej, porowatość efektywną, nasycenie węglowodorami, moduł Younga i współczynnik Poissona. Wykorzystując technikę działania sztucznych sieci neuronowych, przeprowadzono predykcję brakujących informacji, bazując na relacjach pomiędzy analizowanymi parametrami w otworach, gdzie estymowane dane były dostępne. W ostatnich latach obserwuje się dynamiczny rozwój technologii szeroko pojętego uczenia maszynowego (ang. machine learning) i tak zwanej sztucznej inteligencji. Niewiele pozostaje dziedzin nauki, w których nie miałyby one zastosowania. Tak jest również w branży naftowo-gazowniczej. Parametr nasycenia węglowodorami, pomimo wyzwań, jakie niesie za sobą interpretacja tego parametru, również został poddany próbie estymacji, potwierdzając niskimi wartościami korelacji pomiędzy analizowanymi parametrami, że wymaga zdecydowanie bardziej zaawansowanych prac o indywidualnym charakterze. Wyniki predykcji parametrycznej, poddane wcześniej walidacji poprzez charakterystykę parametrów R (różnica pomiędzy wartością rzeczywistą a estymowaną) i RMSE (pierwiastek błędu średniokwadratowego), zostały w kolejnym kroku zaaplikowane w procesie modelowania przestrzennego wszystkich analizowanych parametrów. Finalnie, w celu wizualizacji różnic pomiędzy wykorzystaniem niepełnego i po części estymowanego zestawu danych w analizie przestrzennej, zaprezentowano mapę średnich wartości wybranego parametru w obrębie analizowanego interwału stratygraficznego. Tak przygotowany zestaw danych pozwolił na bardziej wiarygodne odtworzenie przestrzenne rozkładu parametrów istotnych w kontekście charakterystyki złoża węglowodorów, na podstawie którego w kolejnych etapach możliwa jest wiarygodniejsza ocena potencjału złożowego analizowanego obiektu. Zaprezentowana w artykule metodyka, oparta na rozwiązaniu rzeczywistego problemu badawczego, stanowi alternatywę, dla koszto- i czasochłonnych interpretacji geofizycznych, niekiedy znacznych liczb otworów wiertniczych, szczególnie dla obszarów charakteryzujących się relatywnie niewielką przestrzenną zmiennością i złożonością tektoniczną. Warunkiem jest dostępność interpretacji danych geofizyki wiertniczej w co najmniej kilku otworach stanowiącej wzorzec dla odtworzenia zmienności badanego parametru/parametrów w pozostałych profilach otworów wiertniczych.
The article presents the possibilities of using artificial neural networks for parametric prediction in borehole profiles, the application of which supplemented the set of information in all boreholes located within the analyzed area. The approach presented in the article will be used when there is no possibility of specialized interpretation of the drilling geophysics curves, supplementing the missing data. The set of data used in the study included solutions in the profiles of 10 boreholes, four of which were characterized by the availability of the full data set analyzed in this article, including compressional wave velocity, effective porosity, hydrocarbon saturation, Young’s modulus and Poisson’s ratio. Using the technique of the operation of artificial neural networks, a prediction of missing information was carried out based on the relationships between the analyzed parameters in the wells, where the estimated data was available. In recent years, there has been a dynamic development of machine learning technology and the so-called artificial intelligence. There are very few fields of science in which they find no application. The hydrocarbon saturation parameter, despite the challenges posed by the interpretation of this parameter, was also subjected to an estimation attempt, confirming the low correlation values between the analyzed parameters and requiring much more advanced work of an individual nature. The results of parametric prediction, previously validated by characterizing the R and RMSE parameters, were applied in the next step in the spatial modeling process of all analyzed parameters. Finally, as part of the visualization of the differences between the use of an incomplete and partially estimated data set in spatial analysis, a map of mean values of the selected parameter within the analyzed interval was presented. The set of data prepared in this way allowed for a more reliable spatial reconstruction of the distribution of parameters important in the context of the characteristics of the hydrocarbon reservoir, on the basis of which, in the subsequent stages, it is possible to more fully assess the deposit potential of the analyzed object. The methodology presented in the article, supported by a real case study, is an alternative to geophysical interpretations that require financial and time resources, sometimes large numbers of boreholes, especially for areas characterized by relatively low spatial variability and tectonic complexity. The condition is the availability of the interpretation in at least several boreholes, constituting a pattern for recreating the variability of the tested parameter / parameters in the remaining profiles of the boreholes.