Tytuł pozycji:
Stochastic Movement Swarm Performing a Coverage Task with Physical Parameters
This paper describes an attempt of implementing physical parameters into a virtual swarm algorithm solution. It defines which physical parameters of the single object need to be known to properly transfer a virtual algorithm into a physical system. Considerations have been based on a stochastic movement swarm performing a coverage task. Time to finish the task and energy consumptions were measured for different numbers of drones in a swarm allowing to designate an optimal size of the swarm. Additional tests for changing variables allowed us to determine their impact on the swarm performance. The presented algorithm is a discrete-time solution, and every test is divided into steps. Positions of the drones are calculated only in time corresponding to these steps. Their position is unknown between these steps and the algorithm does not check if the paths of two drones cross between subsequent positions. The lower the time interval, the more precise results, but simulating the test requires more computing power. Further work should consider the smallest possible time intervals or additional feature to check if the paths of the drones do not cross.
W artykule opisano próbę implementacji parametrów fizycznych do rozwiązania algorytmu wirtualnego roju. Określono, które parametry fizyczne pojedynczego obiektu muszą być znane, aby poprawnie przenieść wirtualny algorytm do systemu fizycznego. Rozważania oparto na stochastycznym roju ruchu wykonującym zadanie przeszukiwania. Zmierzono czas wykonania zadania i zużycie energii dla różnej liczby dronów w roju, co pozwoliło na wyznaczenie optymalnej wielkości roju. Dodatkowe testy zmieniających się zmiennych pozwoliły określić ich wpływ na wydajność roju. Przedstawiony algorytm jest rozwiązaniem dyskretnym i z każdym testem jest podzielony na kroki. Pozycje dronów są obliczane tylko w czasie odpowiadającym tym krokom. Ich pozycja między tymi krokami jest nieznana, a algorytm nie sprawdza, czy ścieżki dwóch dronów przecinają się między kolejnymi pozycjami. Im krótszy odstęp czasu, tym dokładniejsze wyniki, ale symulacja testu wymaga większej mocy obliczeniowej. Dalsze prace powinny uwzględniać możliwie najmniejsze odstępy czasu lub dodatkową funkcję do sprawdzenia jeśli ścieżki dronów się nie przecinają.