Tytuł pozycji:
Primary structure of the connecting ring of ammonoids and its preservation
The most distinctive and important element of the hydrostatic organ of ammonoids and nautiloids is the siphuncular tube. It consists of mineral and organic segments (so−called connecting rings). The connecting ring of ammonites never preserves its original organic matter in the mineralized state, usually having undergone diagenetic phosphatisation, more rarely, calcification, or even complete loss. Our knowledge about its original ultrastructure is based upon comparison with Recent Nautilus and phosphatised or calcified ammonite fossils. We show that depending on the taphonomic history, both calcium phosphate and calcite can participate in the diagenesis of the connecting ring wall. Under standard light microscopy, the phosphatised elements are indistinguishable from the calcified ones. Both are dark brown in colour, due to an excess of carbon. The structure of the phosphatised siphuncle does not closely replicate the structure of its organic elements. This casts doubts on conclusions of other authors who described a complex porous structure in ammonite siphuncles, which is completely dissimilar to the siphuncular structure of Recent Nautilus and suggests that this organ functioned differently in ammonites. SEM observations using a BSE detector on the calcified parts of the walls of connecting rings revealed a multilayered structure with perpendicular elements connecting particular layers, resembling the structure of a stacked nacreous layer.