Tytuł pozycji:
Feedback stabilization of one-dimensional parabolic systems related to formations
This paper is concerned with the problem of stabilizing one-dimensional parabolic systems related to formations by using finitedimensional controllers of a modal type. The parabolic system is described by a Sturm-Liouville operator, and the boundary condition is different from any of Dirichlet type, Neumann type, and Robin type, since it contains the time derivative of boundary values. In this paper, it is shown that the system is formulated as an evolution equation with unbounded output operator in a Hilbert space, and further that it is stabilized by using an RMF (residual mode filter)-based controller which is of finite-dimension. A numerical simulation result is also given to demonstrate the validity of the finite-dimensional controller.