Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Generalized ordered linear regression with regularization

Tytuł:
Generalized ordered linear regression with regularization
Autorzy:
Łęski, J.
Henzel, N.
Tematy:
linear regression
IRLS
OWA
conjugate gradient optimization
robust methods
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2012, 60, 3; 481-489
0239-7528
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Linear regression analysis has become a fundamental tool in experimental sciences. We propose a new method for parameter estimation in linear models. The 'Generalized Ordered Linear Regression with Regularization' (GOLRR) uses various loss functions (including the o-insensitive ones), ordered weighted averaging of the residuals, and regularization. The algorithm consists in solving a sequence of weighted quadratic minimization problems where the weights used for the next iteration depend not only on the values but also on the order of the model residuals obtained for the current iteration. Such regression problem may be transformed into the iterative reweighted least squares scenario. The conjugate gradient algorithm is used to minimize the proposed criterion function. Finally, numerical examples are given to demonstrate the validity of the method proposed.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies