Tytuł pozycji:
Application of SVD decomposition in correction tasks of mathematical models of dynamic objects
In the paper one of the possible approaches to the problem of developing and verifying of mathematical models of dynamic processes and their computer implementation is considered. This problem plays a decisive role in the efficient design of complex control systems of dynamic objects, in the development of computer tutoring systems for operators of such objects, in preparing simulation systems for pilots, helmsmen ships, and in many other issues. The proposed methodology is based on analysis of characteristics of controllability and observability of suitable objects. Mathematical base for this methodology is singular value decomposition of appropriate matrix.
W artykule zaprezentowano podejście do tworzenia i weryfikowania modeli matematycznych procesów dynamicznych. Opisywany problem odgrywa ważną rolę w procesie opracowywania systemów sterowania złożonymi obiektami dynamicznymi, przy tworzeniu komputerowych systemów nauczania dla operatorów obiektów dynamicznych, w przygotowywaniu systemów symulacyjnych dla pilotów, sterników statków i w innych zagadnieniach. W zadaniach korekcji modeli matematycznych ważna jest odpowiedź na pytania w jakim sensie system jest niesterowalny (nieobserwowalny) i jak zmieniać charakterystyki systemu, żeby system stał się systemem sterowalnym (obserwowalnym). W zadaniach walidacji modeli dynamiki podstawą jest wyjaśnienie stopnia wpływu parametrów modelu na badane charakterystyki. Powstaje problem, w jaki sposób zmieniać charakterystyki modelu, aby jego zachowanie odpowiadało zachowaniu obiektu rzeczywistego. Odpowiedzi należy formułować z wykorzystaniem ogólnosystemowych pojęć znanych i zrozumiałych dla matematyków i programistów. Pojęcie miary cech systemu określa nie tylko stwierdzenie faktu, że system jest lub nie jest sterowalny (obserwowalny), ale także pozwala ocenić bliskość granicy utraty sterowalności (obserwowalności) systemu. W artykule przedstawiono zadanie korekcji efektywności sygnałów sterujących matematycznych modeli dynamiki z wykorzystaniem miary sterowalności liniowych systemów dynamicznych. Podstawą matematyczną opisywanej metodologii jest rozkład SVD odpowiednich macierzy.