Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Modelowanie kartograficzne z wykorzystaniem neurorozmytych automatów komórkowych

Tytuł:
Modelowanie kartograficzne z wykorzystaniem neurorozmytych automatów komórkowych
Using of neuro-fuzzy cellular automata for cartographic modelling
Autorzy:
Olszewski, R.
Tematy:
automaty komórkowe
modelowanie nieliniowe
generalizacja
sieci neuronowe
systemy wnioskowania rozmytego
cellular automata
non-linear modelling
generalization
neural networks
fuzzy inference systems
Data publikacji:
2003
Wydawca:
Stowarzyszenie Geodetów Polskich
Język:
polski
Prawa:
CC BY-SA: Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2003, 13a; 171-180
2083-2214
2391-9477
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Mapa jako środek przekazu informacji chorologicznej, tj. informacji o rozmieszczeniu obiektów i zjawisk w przestrzeni geograficznej, podlega ograniczeniom wynikającym z zakresu pojemności informacyjnej. W procesie przekazu kartograficznego istnieje zatem konieczność celowego uogólnienia informacji źródłowej realizowanego poprzez generali-zację. Jednym ze sposobów generalizacji jest agregacja danych przestrzennych. Istnieje wiele algorytmicznych metod agregacji, większość z nich związana jest z generalizacją danych zapisanych w formacie wektorowym. Dla danych źródłowych w postaci rastrowej wymaga to pracochłonnej wstępnej konwersji formatu raster → wektor oraz wynikowej konwersji wektor → raster. Autor podjął próbę zastosowania bezpośredniej agregacji obiektów powierzchniowych na obrazach rastrowych. Przeprowadzone badania wskazują na celowość zastosowania metod tzw. sztucznej inteligencji obliczeniowej, jako metody kartograficznego modelowania tak zdefiniowanych danych źródłowych. W artykule omówiono trzy wybrane metody sztucznej inteligencji obliczeniowej (automaty komórkowe, sztuczne sieci neuronowe i systemy wnioskowania rozmytego) oraz ich zastosowanie w procesie generalizacji kartograficznej.

Investigations which have been performed by the author justify utilisation of methods of the, so-called, artificial intelligence, as a complex method of cartographic modelling of source data. Of the many existing methods for area aggregation a majority concern maps in vector format. The author investigated some approaches to direct aggregation of area objects in raster maps. This includes cellular automata, neural networks and fuzzy inference systems. The essence of cellular automata is the ability to create complex, global patterns and spatial behaviour, based on simple rules of changes of local range and on knowledge concerning individual cells. Therefore a model of the cartographic generalization process, combining the nature of quantitative generalization of the content and the form with the nature of qualitative generalization, may be developed based on the theory of non-linear cellular automata.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies