Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Porównanie właściwości chmury punktów wygenerowanej metodą dopasowania obrazów zdjęć lotniczych z danymi z lotniczego skanowania laserowego

Tytuł:
Porównanie właściwości chmury punktów wygenerowanej metodą dopasowania obrazów zdjęć lotniczych z danymi z lotniczego skanowania laserowego
Comparison of point clouds derived from aerial image matching with data from airborne laser scanning
Autorzy:
Dominik, W.
Tematy:
chmura punktów
dopasowanie obrazów
semi-global matching
lotnicze skanowanie laserowe
numeryczny model pokrycia terenu
point cloud
image matching
airborne laser scanning (ALS)
digital surface model
Data publikacji:
2014
Wydawca:
Stowarzyszenie Geodetów Polskich
Język:
polski
Prawa:
CC BY-SA: Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2014, 26; 53-56
2083-2214
2391-9477
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Celem niniejszego opracowania było zbadanie właściwości chmur punktów tworzonych metodą dopasowania obrazów zdjęć lotniczych semi-global matching (SGM) i porównanie ich z chmurami punktów z lotniczego skanowania laserowego. Do badań wykorzystane zostały zdjęcia lotnicze oraz dane z lotniczego skanowania laserowego pozyskane w latach 20102013 na obszarze centrum Elbląga. Na podstawie wejściowego zbioru danych wygenerowano chmury punktów metodą SGM, które poddano następnie analizie. Otrzymane chmury punktów badano poprzez porównanie dokładności wysokościowej względem profilu pomierzonego w terenie, porównanie wizualne profili chmur punktów oraz porównanie wizualne wygenerowanych na podstawie chmur punktów modeli pokrycia terenu. Przeprowadzone badania pozwoliły na sformułowanie szeregu szczegółowych wniosków dotyczących jakości chmur punktów SGM w odniesieniu do różnych czynników. Sformułowane wnioski szczegółowe prowadzą do generalnego spostrzeżenia, że chmury punktów SGM są produktem mniej niezawodnym, bardziej nieprzewidywalnym i zależnym od większej liczby czynników niż chmury punktów LIDAR. Mimo to przy odpowiednich parametrach chmury punktów SGM mogą przewyższać dokładnościowo chmury punktów LIDAR, a także dostarczać bardziej szczegółowej informacji dotyczącej pokrycia terenu. Skłania to do wniosku, że chmury punktów SGM mają potencjał i warto rozwijać tę metodę generowania chmur punktów.

The aim of this study was to investigate the properties of point clouds derived from aerial image matching and to compare them with point clouds from airborne laser scanning. A set of aerial images acquired in years 2010-2013 over the city of Elblag were used for the analysis. Images were acquired with the use of three digital cameras: DMC II 230, DMC I and DigiCAM60 with a GSD varying from 4.5 cm to 15 cm. Eight sets of images that were used in the study were acquired at different stages of the growing season – from March to December. Two LiDAR point clouds were used for the comparison – one with a density of 1.3 p/m2 and a second with a density of 10 p/m2. Based on the input images point clouds were created with the use of the semi-global matching method. The properties of the obtained point clouds were analyzed in three ways: – by the comparison of the vertical accuracy of point clouds with reference to a terrain profile surveyed on bare ground with GPS-RTK method – by visual assessment of point cloud profiles generated both from SGM and LiDAR point clouds – by visual assessment of a digital surface model generated from a SGM point cloud with reference to a digital surface model generated from a LiDAR point cloud. The conducted studies allowed a number of observations about the quality of SGM point clouds to be formulated with respect to different factors. The main factors having influence on the quality of SGM point clouds are GSD and base/height ratio. The essential problem related to SGM point clouds are areas covered with vegetation where SGM point clouds are visibly worse in terms of both accuracy and the representation of terrain surface. It is difficult to expect that in these areas SGM point clouds could replace LiDAR point clouds. This leads to a general conclusion that SGM point clouds are less reliable, more unpredictable and are dependent on more factors than LiDAR point clouds. Nevertheless, SGM point clouds generated with appropriate parameters can have better accuracy than LiDAR point clouds and present more detailed information about the terrain surface.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies