Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Polydisc slicing in $ℂ^n$

Tytuł:
Polydisc slicing in $ℂ^n$
Autorzy:
Oleszkiewicz, Krzysztof
Pełczyński, Aleksander
Tematy:
volume of section
Bessel functions
polydisc
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Źródło:
Studia Mathematica; 2000, 142, 3; 281-294
0039-3223
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Let D be the unit disc in the complex plane ℂ. Then for every complex linear subspace H in $ℂ^n$ of codimension 1, $vol_{2n-2}(D^{n-1}) ≤ vol_{2n-2}(H ∩ D^{n}) ≤ 2vol_{2n-2}(D^{n-1})$. The lower bound is attained if and only if H is orthogonal to the versor $e_{j}$ of the jth coordinate axis for some j = 1,...,n; the upper bound is attained if and only if H is orthogonal to a vector $e_{j} + σe_{k}$ for some 1 ≤ j < k ≤ n and some σ ∈ ℂ with |σ| = 1. We identify $ℂ^n$ with $ℝ^{2n}$; by $vol_{k}(·)$ we denote the usual k-dimensional volume in $ℝ^{2n}$. The result is a complex counterpart of Ball's [B1] result for cube slicing.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies