Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Cellularity of free products of Boolean algebras (or topologies)

Tytuł:
Cellularity of free products of Boolean algebras (or topologies)
Autorzy:
Shelah, Saharon
Tematy:
set theory
pcf
Boolean algebras
cellularity
product
colourings
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Źródło:
Fundamenta Mathematicae; 2000, 166, 1-2; 153-208
0016-2736
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The aim this paper is to present an answer to Problem 1 of Monk [10], [11]. We do this by proving in particular that if μ is a strong limit singular cardinal, $θ = (2^{cf(μ)})^+$ and $2^μ = μ^+$ then there are Boolean algebras $\mathbb{B}_1,\mathbb{B}_2$ such that
$c(\mathbb{B}_1) = μ, c(\mathbb{B}_2) < θ but c(\mathbb{B}_1*\mathbb{B}_2)=μ^+$.
Further we improve this result, deal with the method and the necessity of the assumptions. In particular we prove that if $\mathbb{B}$ is a ccc Boolean algebra and $μ^{ℶ_ω} ≤ λ = cf(λ) ≤ 2^μ$ then $\mathbb{B}$ satisfies the λ-Knaster condition (using the "revised GCH theorem").

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies