Tytuł pozycji:
A Novel Theoretical Study of Elastic and Electronic Properties of M₂CdC (M = Zr, Hf, and Ta) MAX Phases
In this study, we have investigated the structural, electronic, and elastic properties of the M₂CdC (M = Ta, Zr, and Hf) MAX phases, using the first-principle methods based on the density functional theory. The calculated formation energies revealed that these compounds are thermodynamically stable in the hexagonal MAX phase. The stability is confirmed by the elastic constants and the conditions of mechanical stability criterion. Also, we have determined the bulk and shear modules of the Young modulus and the Poisson coefficient. The band structures indicate that the three materials are electrically conductive. The chemical bond in M₂CdC is covalent-ionic in nature with the presence of metallic character. For the density of states the hybridization peak between M d and C p occurs in the lower energy range. We have found that there is no gap for these materials due to the existence of a maximum peak of DOS around Fermi level.