Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Identyfikacja zbiorników wodnych, jako obiektów BDOT10K, w zbiorze danych lotniczego skaningu laserowego z wykorzystaniem algorytmu alpha shape

Tytuł:
Identyfikacja zbiorników wodnych, jako obiektów BDOT10K, w zbiorze danych lotniczego skaningu laserowego z wykorzystaniem algorytmu alpha shape
The identification of water bodies as BDOT10K objects in a laser scanning point cloud by means of an alpha-shaped algorithm
Autorzy:
Mendela, M.
Borkowski, A.
Tematy:
lotniczy skaning laserowy
BDOT10k
alfa shape
ekstrakcja
zbiornik wodny
airborne laser scanning (ALS)
Database of Topographic Objects (BDOT10k)
α-shaped
boundary detection
body of water
Data publikacji:
2013
Wydawca:
Uniwersytet Przyrodniczy we Wrocławiu
Język:
polski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Źródło:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum; 2013, 12, 4; 13-26
1644-0668
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Lotnicze skanery laserowe (ALS) wykorzystują najczęściej wiązkę światła z zakresu bliskiej podczerwieni, która absorbowana jest przez wodę. Powoduje to występowanie pustych obszarów (brak odbić promienia laserowego), pozbawionych punktów, w zbiorze danych skaningu laserowego. Detekcja konturów zbiorników wodnych w zbiorze danych skaningu laserowego może być zatem rozumiana jako identyfikacja obrysu obszarów pozbawionych punktów. Tak rozumiana detekcja zbiorników może być wykorzystana do aktualizacji i zasilania Bazy Danych Obiektów Topograficznych 1:10 000 (BDOT10k). Do detekcji zbiorników wodnych wykorzystano w pracy współrzędne x, y punktów klasy grunt, uprzednio sklasyfikowanej chmury punktów, o gęstości nominalnej 4 pkt/m2. Automatyczną identyfikację konturu zbiornika wykonano z wykorzystaniem algorytmu α-shape. Eksperymenty numeryczne wykonano dla 16 zestawów danych testowych (zbiorników wodnych). Ocenę dokładności identyfikacji konturów wykonano na podstawie porównania z ortofotomapą cyfrową o terenowej wielkości piksela 0,10 m. Na podstawie pomierzonych maksymalnych wartości odchyłek stwierdzono, że przeciętnie zbiorniki wodne zostały zidentyfikowane w 95%, a dla 62% obiektów testowych zidentyfikowano kontur ze 100% skutecznością. Ponadto wykorzystany algorytm posiada pewien mechanizm odpornościowy – eliminuje pojedyncze przypadkowe punkty na powierzchni zbiornika. Zaproponowana metoda może stanowić dodatkowe źródło zasilania BDOT, zwłaszcza dla zbiorników wodnych, których brzeg porośnięty jest roślinnością i trudno identyfikowalny na ortofotomapie.

Airborne laser scanners (ALS) usually rely on a near-infrared light beam which is absorbed by water. This produces empty areas with no points in the LiDAR dataset (gaps, laser shot dropouts). Detecting the boundaries of bodies of water in a LiDAR dataset can thus be seen as the identification of boundaries of empty areas. The method for the identification of water bodies could be used to update and supply the Database of Topographic Objects (BDOT10k). The x, y co-ordinates of ground laser points of the previously classified LiDAR point cloud of the 4 points/m2 nominal density were used to detect bodies of water. The automatic identification of bodies of water was performed by the means of an α-shaped algorithm. Numerical experiments were conducted for 16 tested sites, which were bodies of water. The accuracy of boundary identification was evaluated by comparing the results with those seen on orthophotos with a pixel size of 0.10 m. Based on the maximum deviation values of the measured results, it has been shown that bodies of water were identified on average with 95% accuracy and the boundaries of 62% of the tested sites were delineated with 100% efficiency. Furthermore, the studied algorithm has a featured mechanism that enables it to eliminate single, random points distributed on the surface of a body of water. The proposed method can be used as an additional source of BDOT10k, especially for bodies of water whose banks are covered with vegetation which are difficult to identify on orthophotos.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies