Tytuł pozycji:
Wykorzystanie sieci neuronowych do identyfikacji pęknięcia stopy zęba
W opracowaniu przedstawiono wyniki eksperymentu mającego na celu próbę zastosowania sztucznej sieci neuronowej jako klasyfikatora stopnia podcięcia zęba w przekładni zębatej. Klasyfikator neuronowy oparto na sztucznej sieci neuronowej typu SVM z jądrem radialnym. Dane wejściowe do klasyfikatora stanowiła macierz złożona z miar statystycznych. Zidentyfikowany model przekładni zębatej stanowiska FZG posłużył do generacji zbiór uczącego i testującego zastosowanego w eksperymencie.
The work presents results of an experiment that employs the artificial neuronal network in the task of identification of the degree of tooth root cracking. Neural Networks were based on the Support Vector Machine and the radial basis function kernel has been chosen in the experiments. Statistical measures that describe the emergence and degree of tooth gear diagnostic served as input data for the artificial neural networks. The measures employed in the experiment were obtained from signals through the application of a variety of processing methods.