Tytuł pozycji:
Comparison of a Perpetual and PD Inventory Control System with Smith Predictor and Different Shipping Delays Using Bicriterial Optimization and SPEA2
Inventory optimization is critical in inventory control systems. The complexity of real-world inventory systems results in a challenging optimization problem, too complicated to solve by conventional mathematical programing methods. The aim of this work is to confront: a perpetual inventory system found in the literature and inventory system with PD control and Smith predictor proposed by the authors. To be precise, the two control systems for inventory management are analyzed with different
shipping delays and compared. With regard to complexity of the proposed control system, we use a SPEA2 algorithm to solve optimization task for assumed scenario of the market demand. The objective is to minimize the inventory holding cost while avoiding shortages. A discrete-time, dynamic model of inventory system is assumed for the analysis. In order to compare the results of systems, Pareto fronts and signal responses are generated.
W pracy przyjęto dyskretny, stacjonarny, dynamiczny model systemu magazynowego ze stałym w czasie opóźnieniem dostaw. Głównym celem jest przeprowadzenie analizy porównawczej dwóch systemów automatycznego sterowania zamówieniami: ciągłego systemu sterowania magazynem z adaptacyjnym poziomem zamówienia (ang. Perpetual Inventory System with adaptive order level) oraz systemu sterowania magazynem z regulatorem proporcjonalno-różniczkującym oraz
predyktorem Smitha z adaptacyjnym poziomem referencyjnym zapasów dla trzech różnych opóźnień dostaw. Optymalne nastawy układów regulacji zostały dobrane za pomocą algorytmu ewolucyjnego dla problemów optymalizacji wielokryterialnej: SPEA2 (ang. Strength Pareto Evolutionary Approach). W symulacji uwzględniono dwa kryteria minimalizacji: koszt utrzymania zapasów (ang. Holding Cost)
oraz koszt niedoboru zapasu (ang. Shortage Cost). Wyniki badań symulacyjnych zaprezentowano za pomocą wykresów oraz tabel w środowisku MATLAB/Simulink.