Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Zastosowanie obliczeń równoległych do klasyfikacji punktów overlap

Tytuł:
Zastosowanie obliczeń równoległych do klasyfikacji punktów overlap
Application of parallel computing for classification of overlapping points
Autorzy:
Bratuś, R.
Musialik, P.
Pióro, P.
Prochaska, M.
Rzonca, A.
Tematy:
punkty typu overlap
przetwarzanie równoległe
klasyfikacja punktów
kąt skanowania
overlapping points
parallel computing
points classification
scan angle
Data publikacji:
2017
Wydawca:
Stowarzyszenie Geodetów Polskich
Język:
polski
Prawa:
CC BY-SA: Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2017, 29; 11-26
2083-2214
2391-9477
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Publikacja omawia nowatorskie metody rozwiązania ważnego technologicznie zagadnienia, jakim jest klasyfikacji punktów overlap, czyli punktów w pasie podwójnego pokrycia pomiędzy sąsiednimi szeregami skanowania. Prezentowane podejście oparte jest na wydajnej metodzie obliczeń równoległych na procesorach graficznych GPU, pozwalającej na zastosowanie bardziej zaawansowanego algorytmu podczas analizy i przetwarzania danych. Celem sprawdzenia wydajności przeprowadzono testy badanego narzędzia do klasyfikacji punktów overlap, a wyniki odniesiono do możliwości powszechnie stosowanego programu Terrascan firmy Terrasolid. Proponowane innowacje obliczeniowe mają na celu poprawę jakości danych skaningowych pozyskiwanych przy pomocy latających platform takich jak lekkie samoloty czy wiatrakowce. Podniesienie jakości procesu klasyfikacji punktów typu overlap, wymaga dwóch wstępnych etapów przetwarzania. Pierwszy polega na obcięciu brzegów szeregu ściśle według zadanego kąta od pionu. Zastosowane podejście daje bardziej regularne wyniki niż inne metody. Z kolei drugi, oparty o algorytm rozgęszczenia punktów, prowadzi do usuwania nadmiarowych profili skanowania. Proponowane rozwiązanie to klasyfikacja punktów overlap według kąta padania promienia skanera na teren i obiekty terenowe. Reasumując, w ramach opisanych badań dotychczas stosowane metody klasyfikacji punktów overlap zostały poddane rewizji. Korzystając z praktycznych uwag oraz sugestii ze strony wykonawców, wprowadzono szereg udoskonaleń, których prezentacja i dyskusja jest przedmiotem niniejszej publikacji.

The paper presents innovative methods of solving important technological problem: the classification of LiDAR points located in the overlapping area between two parallel scan strips. The presented approach is based on an efficient method of parallel computation using graphic processors, allowing to apply more sophisticated algorithms for data analysis and processing. The tests of the algorithms were executed in order to verify correctness of the assumption that the innovative solutions presented in the paper might increase the efficiency and correctness of the data, referred to well known and popular technological solutions. The suggested computational innovations are applied to increase the quality of the LiDAR data acquired by light airplanes and gyrocopters. Two approaches to increase the quality of classification of overlapping points have bee, proposed. The first process is cutting-off the points of the strip borders strictly according to defined angle measured from vertical direction. The second process is dissolving of the points to get the regular density of the result point cloud. The title issue is the classification of overlapping points according to the angle of incidence to the terrain and other objects. The normal vectors calculation for each of the scan points is necessary for the analysis. Such solution increases the quality of overlaps classification and guarantees its high efficiency thanks to the parallel computation. In conclusion, during the research three innovative approaches were tested and reviewed against commonly used methods. Parallel computation can improve quality and reduce time of processing for overlap classification problem was confirmed.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies